Further Maths Core Pure 2 Practice Paper 2025

- **1**. Let $f(x) = \cos x$. The mean value of f(x) over the interval [0, a] is 0.
 - (a) Write down the value a possible value of a.
 - (b) Let $g(x) = \arccos x$.

Find the exact mean value of g(x) over the interval $[0, \frac{1}{2}]$.

(Total for Question 1 is 5 marks)

2. (a) Prove by induction that

for all $n \geq 1$.

$$\begin{pmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{pmatrix}^n = \begin{pmatrix} \cos n\theta & n\sin\theta\\ -\sin n\theta & \cos n\theta \end{pmatrix}$$

- (b) (i) Explain why $5^a 15$ is always a multiple of 10 for all values of $a \ge 1$.
 - (ii) Let $f(k) = 4^{2k} + 5^k 1$.

By considering f(k+1) - 16f(k), or otherwise, prove by induction that f(k) is always divisible by 10 for all $k \ge 1$.

(Total for Question 2 is 10 marks)

3. The line l_1 has equation $\mathbf{r}_1 = \begin{pmatrix} 1 \\ a \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} -3 \\ 2 \\ b \end{pmatrix}$.

(a) The point A(7, 2, -11) lies on the line l_1 .

Show that a = 6 and b = 5.

(b) Find the shortest distance from the point B(1, 2, -7) to the line l_1 . Give your answer in the form \sqrt{k} , where k is a constant to be determined.

(Total for Question 3 is 7 marks)

- 4. The transformation represented by the 2×2 matrix A maps the point (1, -3) to (-9, 17) and has an invariant point at (3, 1).
 - (a) Find the matrix A.
 - (b) Determine all invariant lines of A.
 - (c) Find the image of the straight line y = 2x + 1 under the transformation A. Give your answer in the form ay + bx + c = 0, where a, b, and c are integers to be determined.

(4)

(Total for Question 4 is 12 marks)

(3)

(4)

(1)

(4)

(5)

(1)

(4)

(3)(5)

5. You are given that

$$\sum_{k=3}^{18} f(k) = 728$$

for some function f(k).

(a) Given that f(k) = ak + b, where a and b are constants, show that 21a + 2b = 91.

(b) Given further that

$$\sum_{a}^{10} f(k) = 183$$

find the values of a and b.

(5) (Total for Question 5 is 8 marks)

6. (a) Prove that

$$\tan 5\theta \equiv \frac{5\tan\theta - 10\tan^3\theta + \tan^5\theta}{1 - 10\tan^2\theta + 5\tan^4\theta}.$$

(5)

(3)

(3)

(b) Using part (a), or otherwise, prove that

$$\tan\frac{\pi}{5} = \sqrt{5 - 2\sqrt{5}}.\tag{4}$$

(c) Prove also that

$$\sec^2 \frac{\pi}{5} + \sec^2 \frac{2\pi}{5} = 12.$$

(Total for Question 6 is 12 marks)

7. The plane Π_1 has equation $\mathbf{r} = \begin{pmatrix} 0\\ 3\\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 3\\ 2\\ -2 \end{pmatrix} + \mu \begin{pmatrix} 2\\ 1\\ 0 \end{pmatrix}$ and the plane Π_2 has equation 2x - 4y - z = 5.

(a) Show that Π_1 and Π_2 are parallel planes.

(4)

(4)

(b) Find the vertical distance between the planes Π_1 and Π_2 .

(c) A third plane
$$\Pi_3$$
 has equation $\mathbf{r} \cdot \begin{pmatrix} 2\\ 1\\ -1 \end{pmatrix} = 4.$

Find the acute angle between Π_1 and Π_3 .

(3) (Total for Question 7 is 11 marks)

- 8. The polar curve C_1 has equation $r = 2 \sec \left(\theta + \frac{\pi}{3}\right)$.
 - (a) Prove that C_1 is a straight line and find its equation.

(3)

(3)

- (b) The polar curve C_2 has equation $r = 3 + \cos^2 \theta$.
 - (i) Show that the Cartesian equation of C_2 is $(x^2 + y^2)^{\frac{3}{2}} = 4x^2 + 3y^2$.
 - (ii) Prove that the gradient function of C_2 can be written in the form

$$\frac{dy}{dx} = \frac{-\cot\theta(a\cos^2\theta + 1)}{b(\cos^2\theta + 1)}$$

where a and b are integers to be determined.

(4) (Total for Question 8 is 10 marks)